Interleukin-6 amplifies glucagon secretion: coordinated control via the brain and pancreas.
نویسندگان
چکیده
Inappropriate glucagon secretion contributes to hyperglycemia in inflammatory disease. Previous work implicates the proinflammatory cytokine interleukin-6 (IL-6) in glucagon secretion. IL-6-KO mice have a blunted glucagon response to lipopolysaccharide (LPS) that is restored by intravenous replacement of IL-6. Given that IL-6 has previously been demonstrated to have a transcriptional (i.e., slow) effect on glucagon secretion from islets, we hypothesized that the rapid increase in glucagon following LPS occurred by a faster mechanism, such as by action within the brain. Using chronically catheterized conscious mice, we have demonstrated that central IL-6 stimulates glucagon secretion uniquely in the presence of an accompanying stressor (hypoglycemia or LPS). Contrary to our hypothesis, however, we found that IL-6 amplifies glucagon secretion in two ways; IL-6 not only stimulates glucagon secretion via the brain but also by direct action on islets. Interestingly, IL-6 augments glucagon secretion from both sites only in the presence of an accompanying stressor (such as epinephrine). Given that both adrenergic tone and plasma IL-6 are elevated in multiple inflammatory diseases, the interactions of the IL-6 and catecholaminergic signaling pathways in regulating GCG secretion may contribute to our present understanding of these diseases.
منابع مشابه
Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons.
Glucagon-like peptide-1 (GLP-1) increases pancreatic insulin secretion via a direct action on pancreatic beta-cells. A high density of GLP-1-containing neurons and receptors is also present in brain stem vagal circuits; therefore, the aims of the present study were to investigate 1) whether identified pancreas-projecting neurons of the dorsal motor nucleus of the vagus (DMV) respond to exogenou...
متن کاملGlucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6.
Glucagon-like peptide 1 (GLP-1), produced in the intestine and the brain, can stimulate insulin secretion from the pancreas and alleviate type 2 diabetes. The cytokine interleukin-6 (IL-6) may enhance insulin secretion from β-cells by stimulating peripheral GLP-1 production. GLP-1 and its analogs also reduce food intake and body weight, clinically beneficial actions that are likely exerted at t...
متن کاملAssessment of the Role of Interstitial Glucagon in the Acute Glucose Secretory Responsiveness of In Situ Pancreatic -Cells
Glucagon is a potent stimulator of insulin release in the presence of a permissive glucose concentration, activating -cells in vitro via both glucagonand glucagon-like peptide-1 (GLP-1)–receptors. It is still unclear whether locally released glucagon amplifies the secretory responsiveness of neighboring -cells in the intact pancreas. The present study investigates this question in the perfused ...
متن کاملXenin-25 Amplifies GIP-Mediated Insulin Secretion in Humans With Normal and Impaired Glucose Tolerance but Not Type 2 Diabetes
Glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-stimulated insulin secretion (GSIS). This response is blunted in type 2 diabetes (T2DM). Xenin-25 is a 25-amino acid neurotensin-related peptide that amplifies GIP-mediated GSIS in hyperglycemic mice. This study determines if xenin-25 amplifies GIP-mediated GSIS in humans with normal glucose tolerance (NGT), impaired glucose...
متن کاملAdrenergically mediated intrapancreatic control of the glucagon response to glucopenia in the isolated rat pancreas.
Alpha adrenergic blockade with phentolamine (10 microM) reduces the glucagon response to severe glucopenia (from 150 to 25 mg/dl) to 22% of the control values in the isolated perfused rat pancreas. Propranolol (10 microM) had no significant effect. Neither alpha nor beta adrenergic blockade reduced the magnitude of glucopenic suppression of insulin secretion, but phentolamine increased insulin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 307 10 شماره
صفحات -
تاریخ انتشار 2014